A Novel Parallel Traffic Control Mechanism for Cloud Computing

Zheng Li, Nenghai Yu, Zhuo Hao

MOE-Microsoft Key Laboratory of Multimedia Computing and Communication
University of Science and Technology of China
Outline

- Introduction
- Weaknesses of HTB
- Parallel HTB
- Experiments
Outline

- Introduction
- Weaknesses of HTB
- Parallel HTB
- Experiments
Traffic Control in Cloud Computing

- Control the outbound bandwidth
 - require an effective bandwidth management
 - traffic scheduler & shaper

- Hierarchical Service
 - idea of cloud computing
 - different service level
 - an attempt of customized SLAs on bandwidth

- A Contradiction
 - different service levels vs. user experience
 - a possible solution : HTB
Hierarchical Token Bucket

- **HTB**
 - a traffic control algorithm
 - currently implemented in Linux kernel
 - a module of TC (Traffic Control)

- **Basic idea**
 - bandwidth borrowing
 - make full use of resource
 - a solution for the contradiction
 - hierarchical service & better user experience
HTB allows bandwidth borrowing to break AR!
Outline

- Introduction
- Weaknesses of HTB
- Parallel HTB
- Experiments
Weaknesses of HTB

- **Processing speed**
 - 500Mbps at most
 - not eligible for cloud computing

- **Reasons**
 - the inherent limitation of sequential program
 - usage of spin-lock in kernel
Outline

- Introduction
- Weaknesses of HTB
- Parallel HTB
- Experiments
Basic Idea

- Lock-free FIFOs based pipelining
 - port HTB from kernel to user space
 - based on multi-core architecture
 - try to eliminate necessity of using locks
 - reduce concurrency
 - selectively apply lock-free structures
 - make it run in a 1-way 2-stage pipeline fashion
Eliminate Locks

- Basic 2 operations of HTB: *enqueue* & *deque*
- Remove *htb_activate* and *htb_deactivate* in the 2 operations
- Critical region is reduced to only the packet queues
- A tradeoff: using locks but no empty queues

vs.

eliminate locks to parallelize HTB but might exist empty queues
Lock-free FIFOs

- Selectively used as the packet queue
- Eliminate time of lock/unlock operations
- Make it possible for HTB to run in a pipelined fashion
- We haven’t adopted the advanced cache-line distance and cache-line aggregation techniques in [1], because unnecessary

Stage1 Lock-free FIFO Stage2

enqueue dequeue

Outline

- Introduction
- Weaknesses of HTB
- Parallel HTB
- Experiments
Bandwidth Allocation

- 2 Scenarios: 1Gbps bandwidth & 2Gbps bandwidth
- The number of users of Scenario 2 are 2 times of that of Scenario 1
- Bandwidth for a user is 0.5Mbps/1Mbps and 2Mbps/12Mbps, for common service(require low band) and special service(require high band)
- Trace files are used in the experiments

```
1G/1G
125M/650M*8
2.5M/13M*50
0.5M/1M 2M/12M
```

TOTAL BANDWIDTH
USER GROUP
USER
APPLICATION
Results

- Exp.1 ~ Exp.4: 1Gbps. Exp.5 ~ Exp.6: 2Gbps
- Exp.1: all users have traffics. Exp.2: 2/3 of users have traffics
- Exp.3 ~ Exp.4: 64B pkt len. Exp.3: use parallel HTB, Exp.4: use HTB
- Exp.5 :all users have traffics. Exp.6: 2/3 of users have traffics

<table>
<thead>
<tr>
<th>FILE</th>
<th>#Packets</th>
<th>#Pkt Len.</th>
<th>#Max Len.</th>
<th>#Min Len.</th>
<th>#Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>File-1</td>
<td>2,397,696</td>
<td>782</td>
<td>1500</td>
<td>64</td>
<td>800</td>
</tr>
<tr>
<td>File-2</td>
<td>2,397,696</td>
<td>782</td>
<td>1500</td>
<td>64</td>
<td>533</td>
</tr>
<tr>
<td>File-3</td>
<td>9,765,925</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>800</td>
</tr>
<tr>
<td>File-4</td>
<td>4,795,392</td>
<td>782</td>
<td>1500</td>
<td>64</td>
<td>1600</td>
</tr>
<tr>
<td>File-5</td>
<td>4,795,392</td>
<td>782</td>
<td>1500</td>
<td>64</td>
<td>1067</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exp.</th>
<th>#Trace</th>
<th>#MPPS</th>
<th>#Mbps</th>
<th>#Enq.</th>
<th>#Deq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>File-1</td>
<td>1.29</td>
<td>1008</td>
<td>0.39</td>
<td>0.54</td>
</tr>
<tr>
<td>2</td>
<td>File-2</td>
<td>1.29</td>
<td>1006</td>
<td>0.39</td>
<td>0.57</td>
</tr>
<tr>
<td>3</td>
<td>File-3</td>
<td>14.1</td>
<td>941</td>
<td>0.39</td>
<td>0.53</td>
</tr>
<tr>
<td>4</td>
<td>File-3</td>
<td>6.7</td>
<td>427</td>
<td>0.64</td>
<td>1.11</td>
</tr>
<tr>
<td>5</td>
<td>File-4</td>
<td>2.60</td>
<td>2033</td>
<td>0.39</td>
<td>0.54</td>
</tr>
<tr>
<td>6</td>
<td>File-5</td>
<td>2.59</td>
<td>2026</td>
<td>0.39</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Parallel HTB can reach 2Gbps for common packet lengths, 300% improvement of the traditional HTB
Results

Output traffic rate of the total traffic

Output traffic rate of a selected user
THANKS!

Questions Are Welcome