Attaching Cloud Storage to a Campus Grid Using Parrot, Chirp, and Hadoop

Patrick Donnelly, Peter Bui, Douglas Thain

Computer Science and Engineering
University of Notre Dame

pdonnel3@nd.edu
pbui@nd.edu
dthain@nd.edu
Overview of Talk

• **Problem:** Using our 1000-core Condor-based campus grid, we can generate much more data than we are actually able to store.

• **Idea:** Use Hadoop as a big, fast storage tank to service our campus grid!

• **Challenge:** Hadoop assumes a trusted local area network, which isn't the case on campus.

• **Solution:** Use Parrot and Chirp as a secure bridge between Hadoop and the campus grid.
• A campus grid is a collection of computing resources in a University setting or institution for idle cycle utilization.

• Example Campus Grid Setups:
 ○ 1,100 cores at the University of Notre Dame
 ○ 20,000 cores in the Purdue BoilerGrid
 ○ 348,000 cores managed by Condor worldwide.

http://www.cs.wisc.edu/condor/map
CPU Utilization for the Last Week

- **CPU-Hours Unused**: 44760 (22%)
- **CPU-Hours Used by Condo**: 142277 (69%)
- **CPU-Hours Used by Owner**: 16351 (8%)
- **CPU-Hours Total**: 203388 (100%)
But...

1200 cores can generate a whole lot of data!

Can we store it in Hadoop?
Why Hadoop is Attractive for Campus Grid Computing

• Originally designed for web search engines that need highly scalable streaming access to large datasets.
• Usable for:
 ◦ Processing thousands to millions of images in biometrics research.
 ◦ Parallel read-mapping for next-generation sequence data in genomic research*.
 ◦ Also used for machine translation, language modeling, and analyzing bulk text such as email or news papers **.

* Source: http://bioinformatics.oxfordjournals.org/content/25/11/1363.abstract
** Source: http://wiki.apache.org/hadoop/PoweredBy
The Hadoop Distributed File System
• Java open source implementation of the concepts in the Google File System.
• Offers very large file storage on the order of terabytes.
• Replicated file storage.
• Active Storage and Map-Reduce.
• Streaming data access.

Image source: hadoop.apache.org
Suitability for Campus Grids

• Interface
 ◦ Java API or POSIX-like C API
 ◦ FUSE
• Deployment
 ◦ Java Virtual Machine + Dependencies
 ◦ FUSE
• Authentication and Security
 ◦ No Authentication
• Interoperability
 ◦ Tightly coupled components across versions of Hadoop.
Enter Chirp

- Distributed File System for use on a Grid.
- Exports file system on host.
- Userlevel filesystem.
- Secure authentication mechanisms.
 - Grid Security Infrastructure
 - Kerberos
 - Hostnames
- Security through Access Control Lists.
Back-end File System Multiplexer

- Chirp multiplexes which underlying file system to access data.
 - Client need not know where the actual data is.
 - Applications can be programmed for a single interface without needing abstractions for different file systems.
- Unix VFS (local) filesystem and HDFS currently supported.
Parrot

- Chirp provides a *libchirp* library for client communication.
- We use Parrot to allow unmodified user application access to Chirp.
- Intercepts IO system calls on x86, amd64

$ parrot app /chirp/hostname:port/myfile

$ parrot /bin/sh
Actual Setup

Server setup:

$ chirp_server_hdfs -x namenode:9100 \
 -p 9094 -r /path/to/root

Client:

$ parrot app /chirp/server:9094/file
 --> app /path/to/root/file
A Summary: Using Chirp and Parrot to bring Hadoop to the Grid

• Users can setup Chirp servers to give Grid access to a Hadoop cluster.
 ◦ Strong Authenticated access. (Firewall Hadoop.)
 ◦ Access Control Lists.
 ◦ Easy userlevel deployment.
• Unmodified Application access to the Chirp server can be achieved using Parrot.
Questions?

Website: http://www.cse.nd.edu/~ccl

Chirp: http://www.cse.nd.edu/~ccl/software/chirp/
Parrot: http://www.cse.nd.edu/~ccl/software/parrot/

Patrick Donnelly: pdonnel3@nd.edu
Peter Bui: pbui@nd.edu
Douglas Thain: dthain@nd.edu