Distributed Computation of π with Apache Hadoop

Tsz-Wo Sze

Yahoo! Cloud Computing Apache Hadoop PMC Member

> Mapred'2010 Dec 1

Agenda

- Introduction
- A New World Record
- How to Compute The n^{th} Bits of π ?
- Computing π with Hadoop

Agenda

- Introduction
- A New World Record
- How to Compute The n^{th} Bits of π ?
- Computing π with Hadoop

What is π ?

 $\rightarrow \pi$ is a mathematical constant such that, for any circle,

$$\pi = \frac{\text{circumference}}{\text{diameter}} = \frac{C}{d}.$$

What is π ?

 $\rightarrow \pi$ is a mathematical constant such that, for any circle,

$$\pi = \frac{\text{circumference}}{\text{diameter}} = \frac{C}{d}.$$

• We have $\pi = 3.244$

What is π ?

$$\pi = \frac{\text{circumference}}{\text{diameter}} = \frac{C}{d}.$$

We have $\pi = 3.244$ (in hexadecimal \odot)

Decimal, Hexadecimal & Binary

 \triangleright Representing π in different bases

```
\pi = 3.1415926535 8979323846 2643383279 ...
= 3.243F6A88 85A308D3 13198A2E ...
= 11.00100100 00111111 01101010 ...
```

- ▶ Bit position is counted after the radix point.
- ▶ e.g., the eight bits starting at the ninth bit position are 00111111 in binary or 3F in hexadecimal.

Two Types of Challenges

 \triangleright Computing the first *n* decimal digits of π

$$\pi = 3.141592653589793238462643383279...$$

 \triangleright Computing only the n^{th} bits of π

$$\pi = 11.00100100\ 001111111\ 01101010\ 10001000...$$

We will focus on the second challenge in this talk.

Previous Results

- ► Fabrice Bellard (1997)
 - Farthest bit position: 1,000,000,000,151(= $10^{12} + 151$)
 - Precision: 152 bits
 - Machines: 20 workstations
 - Duration: 12 days
 - CPU time: 220 days
 - Verification: 180 days CPU time

Previous Results '

- ▶ PiHex (2000)
 - Farthest bit position: 1,000,000,000,000,060(= $10^{15} + 60$)
 - Precision: 64 bits
 - Machines: Idle slices of 1734 machines
 An 'average' computer has a 450 MHz CPU
 - Duration: 736 days (>2 years)
 - *CPU time*: 137 years
 - Verification: ???

It is not clear if they have verified their results.

Agenda

- Introduction
- A New World Record
- How to Compute The n^{th} Bits of π ?
- Computing π with Hadoop

A New World Record

▶ Bit values (in hexadecimal)

0E6C1294 AED40403 F56D2D76 4026265B

CA98511D OFCFFAA1 OF4D28B1 BB5392B8

A New World Record '

▶ Bit values (in hexadecimal)

OE6C1294 AED40403 F56D2D76 4026265B CA98511D OFCFFAA1 OF4D28B1 BB5392B8 (256 bits)

- \star The first bit position: 1,999,999,999,997 (= $2 \cdot 10^{15} 3$)
- \star The last bit position: 2,000,000,000,000,252 (= $2 \cdot 10^{15} + 252$)
- \star The two quadrillionth $(2 \cdot 10^{15} \text{th})$ bit is 0.

A New World Record "

- ➤ Yahoo! Cloud Computing (July 2010)
 - Farthest bit position: 2,000,000,000,000,252
 - Precision: 256 bits
 - Machines: Idle slices of 1000-node clusters

 Each node has two quad-core 1.8-2.5 GHz CPUs
 - Duration: 23 days
 - *CPU time*: 503 years
 - Verification: 582 years CPU time

Comparing with PiHex

	PiHex	Our Computations	Ratio
Position:	around 10^{15}	around $2 \cdot 10^{15}$	1:2
Precision:	64 bits	256 bits	1:4
Duration:	736 days	23 days	32:1

Note that our hardware is 10 years more advanced than the ones used by PiHex.

BBC News (16 Sep 2010)

➤ Pi record smashed as team finds two-quadrillionth digit http://www.bbc.co.uk/news/technology-11313194

NewScientist (17 Sep 2010)

▶ New pi record exploits Yahoo's computers

http://www.newscientist.com/article/dn19465-new-pi-record-exploits-yahoos-com/article/dn19465-ne

Other News Coverage

New Pi Record Exploits Yahoo's Computers

http://cacm.acm.org/news/99207-new-pi-record-exploits-yahoos-computers

The Register The Yahoo! boffin scores pi's two quadrillionth bit

http://www.theregister.co.uk/2010/09/16/pi_record_at_yahoo

Pi calculation more than doubles old record

http://www.radionz.co.nz/news/world/57128/pi-calculation-more-than-doubles-of

Hadoop used to calculate Pi's two quadrillionth bit

http://www.zdnet.co.uk/blogs/mapping-babel-10017967/hadoop-used-to-calculate-

Yahoo! researcher breaks Pi record in finding the two-quadrillionth digit

http://www.engadget.com/2010/09/17/yahoo-researcher-breaks-pi-record-in-find

Nicholas Sze of Yahoo Finds Two-Quadrillionth
Digit of Pi

http://science.slashdot.org/story/10/09/16/2155227/Nicholas-Sze-of-Yahoo-Fine

The 2,000,000,000,000,000th digit of the mathematical constant pi discovered

http://news.gather.com/viewArticle.action?articleId=281474978525563

Researcher Shatters Pi Record by Finding Two-Quadrillionth Digit

http://www.maximumpc.com/article/news/researcher_shatters_pi_record_finding_two-quadrillionth_digit

http://radar.oreilly.com/2010/09/strata-week-grabbing-a-slice.html

PRAUDA® 2 Quadrillionth digit of PI is found: Scientist celebration in worldwide Pandemonium

http://engforum.pravda.ru/showthread.php?296242-2-Quadrillionth-digit-of-PI-

And the number is...0

http://www.hexus.net/content/item.php?item=26505

Pi Record Smashed as Team Finds Two-Quadrillionth Digit

http://hardocp.com/news/2010/09/16/pi_record_smashed_as_team_finds_twoquadril digit

Yahoo Engineer Calculates Two Quadrillionth
Bit Of Pi

http://www.webpronews.com/topnews/2010/09/17/yahoo-engineer-calculates-two-qu

Reaches the 2 Quadrillionth Bit of Pi

http://www.readwriteweb.com/cloud/2010/09/a-cloud-computing-milestone-ya.php

Thaindian News Yahoo researcher Nicolas Sze determines the 2,000,000,000,000,000th digit of the mathematical constant pi

http://www.thaindian.com/newsportal/sci-tech/yahoo-researcher-nicolas-sze-de-100430278.html

...

Other Results

- ▶ We also have computed
 - the first billion bits, and
 - around the positions $n = 10^m$ for $m \le 15$.
- \triangleright The first billion (10⁹) bits
 - Arbitrary precision arithmetic

Starting Bit Position	Precision (bits)	Time Used	CPU Time	Date Completed
1	800,001,000	10 days	19 years	June 23, 2010
800,000,001	200,001,000	3 days	8 years	June 22, 2010

Ten & Hundred Trillion

- $n = 10^{13}, 10^{14}$
 - It appears that both results are new.
 - $n = 10^{13}$
 - ★ Verified with Alexander Yee
 - ★ 5 trillion decimal digits (August 2010)
 - $\star \approx 1.66 \cdot 10^{13} \text{ bits}$
 - ★ These two results agree ©

One Quadrillion

 $n = 10^{15}$

The result is similar to the one obtained by PiHex except:

- the chosen starting positions are slightly different
- our result has higher precision (228-bit vs 64-bit)

The overlapped bits of these two results agree. ©

Agenda

- Introduction
- A New World Record
- How to Compute The n^{th} Bits of π ?
- Computing π with Hadoop

The BBP Formula

▶ Bailey, Borwein and Plouffe (1996)

$$\pi = \sum_{k=0}^{\infty} \frac{1}{2^{4k}} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right)$$

The above equation is called **the BBP formula**.

- This remarkable discovery leads to the first digitextraction algorithm for π in base 2.
 - allow computing the n^{th} bits without computing the earlier bits

Another BBP-type Formula

▶ Bellard (1997)

$$\pi = \sum_{k=0}^{\infty} \frac{(-1)^k}{2^{10k}} \left(\frac{2^2}{10k+1} - \frac{1}{10k+3} - \frac{2^{-4}}{10k+5} - \frac{2^{-4}}{10k+7} + \frac{2^{-6}}{10k+9} - \frac{2^{-1}}{4k+1} - \frac{2^{-6}}{4k+3} \right)$$

▶ 43% faster than the BBP formula

Computing The $(n+1)^{\text{th}}$ Bits of π

- ▶ In order to obtain the $(n+1)^{th}$ bits,
 - multiply π by 2^n , and
 - take the fraction part,

$$\{2^n \pi\}, \quad \text{where } \{x\} \stackrel{\text{def}}{=} x - \lfloor x \rfloor.$$

For examples,

$$\{3.14\} = 0.14$$
 (fraction part)
 $\lfloor 3.14 \rfloor = 3$ (integer part)

Example

ightharpoonup Suppose n+1=9.

$$\pi = 11.00100100 \stackrel{9}{001111111 \cdots}$$

$$\begin{cases}
2^n \pi \\ = \begin{cases} 2^8 \pi \\ \\ = \begin{cases} 11 \ 00100100.\underline{001111111....} \\ \\ = .00111111.... \end{cases}$$

The BBP Algorithm

▶ Using BBP formula

$$\pi = \sum_{k=0}^{\infty} \frac{1}{2^{4k}} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right),$$

we have

$$\{2^{n}\pi\} = \left\{ \sum_{k=0}^{\infty} \frac{2^{n+2-4k}}{8k+1} - \sum_{k=0}^{\infty} \frac{2^{n-1-4k}}{2k+1} - \sum_{k=0}^{\infty} \frac{2^{n-4k}}{8k+5} - \sum_{k=0}^{\infty} \frac{2^{n-1-4k}}{4k+3} \right\}.$$

Drop The Integer Part Earlier

$$\{2^{n}\pi\} = \left\{ \left\{ \sum_{k=0}^{\infty} \frac{2^{n+2-4k}}{8k+1} \right\} - \left\{ \sum_{k=0}^{\infty} \frac{2^{n-1-4k}}{2k+1} \right\} - \left\{ \sum_{k=0}^{\infty} \frac{2^{n-4k}}{8k+5} \right\} - \left\{ \sum_{k=0}^{\infty} \frac{2^{n-1-4k}}{4k+3} \right\} \right\}$$

Drop The Integer Part Earlier'

$$\{2^{n}\pi\} = \left\{ \left\{ \sum_{k=0}^{\infty} \left\{ \frac{2^{n+2-4k}}{8k+1} \right\} \right\} - \left\{ \sum_{k=0}^{\infty} \left\{ \frac{2^{n-1-4k}}{2k+1} \right\} \right\} - \left\{ \sum_{k=0}^{\infty} \left\{ \frac{2^{n-4k}}{8k+5} \right\} \right\} - \left\{ \sum_{k=0}^{\infty} \left\{ \frac{2^{n-1-4k}}{4k+3} \right\} \right\} \right\}$$

Split The Summations

▶ For each sum, write

$$\left\{ \sum_{k=0}^{\infty} \left\{ \frac{2^{n+x-4k}}{yk+z} \right\} \right\} = \left\{ \sum_{\substack{n+x-4k>0\\k\geq 0}} A_k + \sum_{\substack{n+x-4k\leq 0\\k\geq 0}} B_k \right\},\,$$

where

$$A_k \stackrel{\text{def}}{=} \frac{2^{n+x-4k} \bmod (yk+z)}{yk+z},$$

$$B_k \stackrel{\text{def}}{=} \frac{1}{2^{4k-n-x}(yk+z)}.$$

Split The Summations '

▶ For each sum, write

$$\left\{ \sum_{k=0}^{\infty} \left\{ \frac{2^{n+x-4k}}{yk+z} \right\} \right\} = \left\{ \sum_{\substack{n+x-4k>0\\k\geq 0}} A_k + \sum_{\substack{n+x-4k\leq 0\\k\geq 0}} B_k \right\},\,$$

where

$$A_k \stackrel{\text{def}}{=} \frac{2^{n+x-4k} \bmod (yk+z)}{yk+z},$$
 $B_k \stackrel{\text{def}}{=} \frac{1}{2^{4k-n-x}(yk+z)}.$

Split The Summations "

▶ For each sum, write

$$\left\{ \sum_{k=0}^{\infty} \left\{ \frac{2^{n+x-4k}}{yk+z} \right\} \right\} = \left\{ \sum_{\substack{n+x-4k>0\\k\geq 0}} A_k + \sum_{\substack{n+x-4k\leq 0\\k\geq 0}} B_k \right\},\,$$

where

$$A_k \stackrel{\text{def}}{=} \frac{2^{n+x-4k} \bmod (yk+z)}{yk+z},$$

$$B_k \stackrel{\text{def}}{=} \frac{1}{2^{4k-n-x}(yk+z)}.$$

Evaluating The Summations

▶ The first sum

$$\left\{ \sum_{0 \le k < \frac{n+x}{4}} A_k \right\} = \left\{ \sum_{0 \le k < \frac{n+x}{4}} \frac{2^{n+x-4k} \bmod (yk+z)}{yk+z} \right\}$$

- Number of terms: linear to n
- Integer operations: mod-powering
- Floating point operations: division with a fixed precision

Evaluating The Summations'

▶ The second sum

$$\left\{ \sum_{\substack{n+x \le k}} B_k \right\} = \left\{ \sum_{\substack{n+x \le k}} \frac{1}{2^{4k-n-x}(yk+z)} \right\}$$

- Number of terms: linear to the precision
- Integer operations: shifting
- Floating point operations: reciprocal computation with a lower precision

Algorithm Characteristics

- ightharpoonup For position n and precision p,
 - Running time: $O(p(n^{1+\epsilon}+p))$ for any $\epsilon > 0$
 - $\star p$ small: essentially linear in n, $O(n^{1+\epsilon})$
 - \star n small: quadratic in p, $O(p^2)$
 - Space: $O(p + \log n)$
 - Embarrassingly parallel:
 - ★ The summations can be easily split into many smaller summations.
 - ★ Easy to compute in parallel

Parameters

- ▶ Usually, we have
 - large position n (e.g. $2 \cdot 10^{15}$)
 - small precision p (e.g. 288)

Again,

- \star running time is essentially linear, $O(n^{1+\epsilon})$;
- \star space is only $O(\log n)$.

Errors

- Possible errors
 - Rounding errors: losing precision
 - Hardware errors: rare but hard to be detected
- ▶ For the new world record,
 - Two computations at two different positions
 - Only the bits covered by both computations are considered as valid results.

Starting Bit Position	Precision (bits)	Time Used	CPU Time	Date Completed
1,999,999,999,999,993	288	23 days	582 years	July 29, 2010
1,999,999,999,997	288	23 days	503 years	July 25, 2010

Agenda

- Introduction
- A New World Record
- How to Compute The n^{th} Bits of π ?
- Computing π with Hadoop

MapReduce Summation

▶ The BBP algorithm basically evaluates the sum

$$S = \sum_{i \in I} T_i$$

• each term T_i is simple

We have
$$A_k = \frac{2^{n+x-4k} \mod (yk+z)}{yk+z}$$
 and $B_k = \frac{1}{2^{4k-n-x}(yk+z)}$

• I is a large index set

For position $n = 10^{15}$, we have $|I| \approx 7 \cdot 10^{14}$ using Bellard's formula.

A Straightforward Approach

- Partition the index set I into m pairwise disjoint subsets I_1, \dots, I_m
- ▶ Then, compute the summation by a job with
 - m maps: each map evaluates

$$\sigma_j \stackrel{\mathsf{def}}{=} \sum_{i \in I_j} T_i$$

• Single reduce: compute the final sum

$$S = \sum_{1 \le j \le m} \sigma_j$$

Two Problems

- ▶ Multiple maps but one reduce
 - Fail to utilize reduce slots
- ▶ The job may run for a long time.
 - Need to persist the intermediate results

Starting Bit Position	Precision (bits)	Time Used	CPU Time	Date Completed	
99,999,999,997	1024	4 days	37 years	June 11, 2010	
100,000,000,000,001	1024	5 days	40 years	June 7, 2010	
999,999,999,999,993	288	13 days	248 years	July 2, 2010	
1,000,000,000,000,001	256	25 days	283 years	July 6, 2010	
1,999,999,999,999,993	288	23 days	582 years	July 29, 2010	
1,999,999,999,997	288	23 days	503 years	July 25, 2010	

Multi-level Partitioning

▶ Partition the sum into many small jobs

Final Sum:
$$S = \sum_{1 \le j \le m} \Sigma_j$$
 Jobs:
$$\Sigma_j = \sum_{1 \le k \le m_j} \sigma_{j,k}$$
 Tasks:
$$\sigma_{j,k} = \sum_{1 \le t \le m_{j,k}} s_{j,k,t}$$
 Threads:
$$s_{j,k,t} = \sum_{i \in I_{j,k,t}} T_i$$

▶ Write the intermediate results into HDFS

Map-side & Reduce-side Computations

- ▶ Developed a *generic framework* to execute tasks on either the map-side or the reduce-side.
- ▶ Applications only have to define two functions:
 - partition(c, m): partition the computation c into m parts c_1, \ldots, c_m
 - compute(c): execute the computation c

Map-side Job

- ► Contains multiple mappers and zero reducers
 - A PartitionInputFormat partitions c is into m parts
 - Each part is executed by a mapper

Reduce-side Job

- ► Contains a mapper and multiple reducers
 - A SingletonInputFormat launches
 a PartitionMapper
 - An Indexer launches m reducers.

Utilizing The Idle Slices

- ► Monitor cluster status
 - Submit a map-side (or reduce-side) job if there are sufficient available map (or reduce) slots.
- ► Small jobs
 - Hold resource only for a short period of time
- ▶ Interruptible and resumable
 - can be interrupted at any time by simply killing the running jobs

Running The Jobs

Running Jobs

Jobid	Priority	User	Name	Map % Complete	Map Total	Maps Completed	Reduce % Complete	Reduce Total	Reduces Completed	Job Scheduling Information
job_201006091641_93488	NORMAL	tsz	1,999,999,999,999,996- 288/P20_3.job9332	100.00%	1	1	99.99%	100	97	0 running map tasks using 0 map slots. 0 additional slots reserved. 3 running reduce tasks using 3 reduce slots. 0 additional slots reserved.
job_201006091641_93491	NORMAL	tsz	1,999,999,999,999,996- 288/P20_3.job9335	100.00%	1	1	99.99%	100	96	0 running map tasks using 0 map slots. 0 additional slots reserved. 4 running reduce tasks using 4 reduce slots. 0 additional slots reserved.
job_201006091641_93492	NORMAL	tsz	1,999,999,999,999,996- 288/P20_3.job9336	100.00%	1	1	99.99%	100	92	0 running map tasks using 0 map slots. 0 additional slots reserved. 8 running reduce tasks using 8 reduce slots. 0 additional slots reserved.
job_201006091641_93494	NORMAL	tsz	1,999,999,999,999,996- 288/P20_3.job9337	99.99%	200	199	0.00%	0	0	1 running map tasks using 1 map slots. 0 additional slots reserved. 0 running reduce tasks using 0 reduce slots. 0 additional slots reserved.
job_201006091641_93495	NORMAL	tsz	1,999,999,999,999,996- 288/P20_3.job9338	99.99%	200	179	0.00%	0	0	21 running map tasks using 21 map slots. 0 additional slots reserved. 0 running reduce tasks using 0 reduce slots. 0 additional slots reserved.
job_201006091641_93497	NORMAL	tsz	1,999,999,999,999,996- 288/P20_3.job9339	100.00%	1	1	99.99%	100	36	0 running map tasks using 0 map slots. 0 additional slots reserved. 64 running reduce tasks using 64 reduce slots. 0 additional slots reserved.
job_201006091641_93499	NORMAL	tsz	1,999,999,999,999,996- 288/P20_3.job9340	100.00%	1	1	99.99%	100	30	0 running map tasks using 0 map slots. 0 additional slots reserved. 70 running reduce tasks using 70 reduce slots. 0 additional slots reserved.
job_201006091641_93500	NORMAL	tsz	1,999,999,999,999,996- 288/P20_3.job9341	100.00%	1	1	99.99%	100	52	0 running map tasks using 0 map slots. 0 additional slots reserved. 48 running reduce tasks using 48 reduce slots. 0 additional slots reserved.
job_201006091641_93501	NORMAL	tsz	1,999,999,999,999,996- 288/P20_3.job9342	100.00%	1	1	99.99%	100	23	0 running map tasks using 0 map slots. 0 additional slots reserved. 77 running reduce tasks using 77 reduce slots. 0 additional slots reserved.
job_201006091641_93502	NORMAL	tsz	1,999,999,999,999,996- 288/P20_3.job9343	100.00%	1	1	99.99%	100	45	0 running map tasks using 0 map slots. 0 additional slots reserved. 55 running reduce tasks using 55 reduce slots. 0 additional slots reserved.
job_201006091641_93503	NORMAL	tsz	1,999,999,999,999,996- 288/P20_3.job9344	100.00%	1	1	99.99%	100	28	0 running map tasks using 0 map slots. 0 additional slots reserved. 72 running reduce tasks using 72 reduce slots. 0 additional slots reserved.
job_201006091641_93505	NORMAL	tsz	1,999,999,999,999,996- 288/P20_3.job9345	100.00%	1	1	99.99%	100	3	0 running map tasks using 0 map slots. 0 additional slots reserved. 97 running reduce tasks using 97 reduce slots. 0 additional slots reserved.
job_201006091641_93508	NORMAL	tsz	1,999,999,999,999,996- 288/P20_3.job9346	99.99%	200	117	0.00%	0	0	83 running map tasks using 83 map slots. 0 additional slots reserved. 0 running reduce tasks using 0 reduce slots. 0 additional slots reserved.

The World Record Computation

- ▶ 35,000 MapReduce jobs, each job either has:
 - 200 map tasks with one thread each, or
 - 100 reduce tasks with two threads each.
- ► Each thread computes 200,000,000 terms
 - \sim 45 minutes.
- ➤ Submit up to 60 concurrent jobs
- ▶ The entire computation took:
 - 23 days of real time and 503 CPU years

Thank you!