Adapting Bioinformatics Applications for Heterogeneous Systems: A Case Study

Irena Lanc
University of Notre Dame
At Present

- Growth in size of biological datasets driving the need for greater processing power
- Greater numbers of research facilities relying on clouds and grids
- Bioinformatics software incorporates MPI or MapReduce
 → leverages multi-core and distributed computing resources
Motivation

- Proliferation of small-scale, specialized bioinformatics programs, designed with particular project or even data set in mind
- Programs often serial, or tied to a particular distributed system
- Burdens end users
The Case of PEMer

- PEMer is a structural variation (SV) detection pipeline, written in Python
- SVs including indels, inversions, and duplications, are an important contributor to genetic variation
- PEMer provides a 5-step workflow to extract structural variation from given data gene sequence

A Brief Introduction to Structural Variations

Insertion – Addition of DNA into gene sequence

Deletion – Removal of DNA from sequence

Inversion – reversal of portion of DNA
The PEMer SV Pipeline

1. Preprocessing to put PEM data in proper format

2. Mate-pair ends independently aligned to reference using MAQ or Megablast
The PEMer SV Pipeline

3. Optimal placement of mate-pair reads according to algorithm that seeks to minimize outliers

4. Mate pairs identified using experimentally defined cutoff span value
5. Outliers classified into unique SVs. Clusters indicating the same SV are merged together
The PEMer SV Pipeline

- A distributed-system version of PEMer came bundled, but it was restricted to shared-memory batch systems
- What was missing: a flexible, modular adaptation of the pipeline for heterogeneous systems and ad-hoc clouds
The PEMer SV Pipeline

- We refactored the pipeline using the Weaver/Starch/Makeflow stack (ND CCL) to allow for execution on multiple systems
- Scripts and higher level programs are practical solution for managing parallelization
- Several key lessons from this process can be applied to adapting other bioinformatics applications
Anatomy of the Weaver/Starch/Makeflow Stack

Weaver – Python-based framework for organizing/executing large-scale bioinformatics workflows
Anatomy of the Weaver/Starch/Makeflow Stack

- Datasets → collection of data objects with metadata accessible by query functions
- Functions → define interface to executables
- Abstractions → higher-order functions that are applied in specific patterns (i.e. Map, AllPairs, WaveFront)
Anatomy of the Weaver/Starch/Makeflow Stack

Advantages of using Python-based Weaver:

- Familiar syntax
- Easily deployable
- Extensible
Anatomy of the Weaver/Starch/Makeflow Stack

Starch
Application for encapsulating program dependencies in the form of “Standalone Application Archives” (SAAs)

- Complicated sets of dependencies
- Environment variables
- Input files
- User-specified commands
Anatomy of the Weaver/Starch/Makeflow Stack

Starch, cont.

All elements are compressed into a tarball, which is appended to a template shell script wrapper.

- Wrapper script automatically extracts the archive, configures the environment, and executes the provided commands.

Weaver + Starch – enable the easy generation of Makeflows and the packaging of dependencies
Anatomy of the Weaver/Starch/Makeflow Stack

Makeflow

- Workflow engine designed for execution on clusters, grids and clouds
- Takes in a specified workflow, and parallelizes it
- Workflows are similar to Unix `make` files, and take the following format:

 \[\text{target(s)}: \text{source input(s)} \text{ command(s)} \]
Anatomy of the Weaver/Starch/Makeflow Stack

Makeflow

- Workflow takes the form of a DAG
- Fault-tolerant. If the workflow stops or fails, Makeflow initiates resumption from failure point
Application of the Stack

- Refactoring begins with identifying data parallel portions of PEMer
 - Luckily, all of the major steps can be executed in parallel
- Each step of the pipeline re-written as Weaver function, which in turn generates the corresponding Makeflow rules
 - Made use of the Map abstraction
- All appropriate dependencies were packaged using Starch
Data Used

PEMer pipeline applied to set of data from *Daphnia pulex*, an aquatic crustacean known for its extreme phenotypic plasticity

We provide PEMer with the following files

- File containing mate pair reads – 2.0 GB
- List of mate pairs
- Reference genome 222 MB
- First step of PEMer created 231 MB formatted file for subsequent distributed steps
Deployment

Makeflow framework used to execute workflow, using 3 different frameworks

- **Condor** – heterogeneous, highly contentious environment
- **SGE** – more homogeneous, less pre-emption, shared FS
- **Work Queue** – lightweight, distributable through different batch systems or manually deployed

 → **Work Queue** executed using **Condor** and **SGE**
Deployment

- Submissions to **Condor** performed from a 12-core machine with 12 GB of memory
- Submissions to **SGE** performed from an 8-core machine with 32 GB of memory
- Both machines were accessible to students across campus
- Frequently had to contend with multiple users sharing the machine
Results

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Wall Clock Time</th>
<th>CPU Time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential</td>
<td>> 2 weeks</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SGE original (100)</td>
<td>0 days 1:16:33</td>
<td>5 days 2:9:37</td>
<td>95.7</td>
</tr>
<tr>
<td>Condor (100)</td>
<td>0 days 19:15:32</td>
<td>73 days 10:29:00</td>
<td>91.5</td>
</tr>
<tr>
<td>Work Queue (100) Condor</td>
<td>0 days 23:44:24</td>
<td>84 days 17:21:57</td>
<td>85</td>
</tr>
<tr>
<td>Work Queue (100) SGE</td>
<td>0 days 18:31:21</td>
<td>73 days 12:8:54</td>
<td>95.2</td>
</tr>
<tr>
<td>Condor (300)</td>
<td>0 days 08:49:57</td>
<td>71 days 12:43:27</td>
<td>194.36</td>
</tr>
<tr>
<td>Work Queue (300) Condor</td>
<td>0 days 11:5:47</td>
<td>78 days 9:39:27</td>
<td>169</td>
</tr>
<tr>
<td>Work Queue (scaled) Condor</td>
<td>0 days 10:10:49</td>
<td>73 days 15:37:24</td>
<td>173</td>
</tr>
</tbody>
</table>
Comparison to Existing Batch Executable

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Provided Batch Script</th>
<th>Makeflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requires Shared File System</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Code Encapsulation</td>
<td>A single script that handles the four core programs at once</td>
<td>A pipeline consisting of discrete steps executed consecutively</td>
</tr>
<tr>
<td>Deployment Environment</td>
<td>Shared file system/batch system, e.g. SGE</td>
<td>Any batch system, e.g. Condor, SGE, Work Queue</td>
</tr>
<tr>
<td>Logging</td>
<td>Start/stop times Program log captured using stderr and stdout</td>
<td>Detailed execution log Batch system log Optional debugging output</td>
</tr>
</tbody>
</table>
Results

Condor - 300 jobs

- Overhead from separate matchmaking, data caching for each new job

Work Queue - scaled

- Work Queue caches data, workers run continuously, avoid startup overhead on Condor
Lessons Learned

I. Determine optimal granularity

- Strike a good balance between the size of jobs and the number of jobs
- Small jobs can overwhelm the workflow engine ability to dispatch jobs effectively
- Large jobs susceptible to eviction, preemption
Lessons Learned

II. Understand remote path conventions

- Batch systems can have idiosyncratic interpretation of paths on remote machines
- A closer look at the required format can reveal unexpected requirements, even in established systems

Weaver/Makeflow—soft links not accepted, full path required underscores rather than backslashes
Lessons Learned

III. Be aware of scalability of native OS utilities

- Native functions such as `cat` and `rm` have limits on number of arguments
- Make sure these are not being overloaded by using utilities such as `find` with `-exec` to avoid
- Folder file limits can also be problematic, so consider this when choosing granularity
Lessons Learned

IV. Identify semantic differences between batch system and local programs

• Goals of batch system and pipeline can differ
• Batch system “success” = a returned file
• Pipeline “success” = a correctly processed file
• Try to align the goals of the two systems

PEMer/Makeflow – Jobs ran `stat` to check size of returned file and return appropriate job status
Lessons Learned

V. Establish execution patterns of program pipeline

- Recognize opportunities to apply abstractions
- Determine granularity
- Analyze data flow
- Problems arise if input for some steps not known *a priori*

PEMer/Weaver – Lack of dynamic compilation necessitates multiple sequential Makeflows
Conclusions

- Refactoring was a success
- Weaver/Starch/Makeflow stack allowed for clean, intuitive adaptation of the program for distribution
- Execution on multiple heterogeneous systems now possible
- Scaled well, with good speedup
- Various obstacles provided excellent learning experience
Questions?