A Hierarchical Framework for Cross-Domain MapReduce Execution

Yuan Luo¹, Zhenhua Guo¹, Yiming Sun¹,
Beth Plale¹, Judy Qiu¹, Wilfred W. Li²

¹ School of Informatics and Computing, Indiana University
² San Diego Supercomputer Center, University of California, San Diego

ECMLS Workshop of HPDC 2011, San Jose, CA, June 8th 2011
Background

• The MapReduce programming model provides an easy way to execute embarrassingly parallel applications.

• Many data-intensive life science applications fit this programming model and benefit from the scalability that can be delivered using this model.
A MapReduce Application from Life Science: AutoDock Based Virtual Screening

• AutoDock:
 – a suite of automated docking tools for predicting the bound conformations of flexible ligands to macromolecular targets.

• AutoDock based Virtual Screening:
 – Ligand and receptor preparation, etc.
 – A large number of docking processes from multiple targeted ligands
 – Docking processes are data independent

Image source: NBCR
Challenges

• Life Science Applications typically contains large dataset and/or large computation.
• Only small clusters are available for mid-scale scientists.
• Running MapReduce over a collection of clusters is hard
 – Internal nodes of a cluster is not accessible from outside.
Solutions

• Allocating a large Virtual Cluster
 – Pure Cloud Solution

• Coordinating multiple physical/virtual clusters.
 – Physical clusters
 – Physical + Virtual clusters
 – Virtual clusters
Hierarchical MapReduce

Gather computation resources from multiple clusters and run MapReduce jobs across them.
Features

• Map-Reduce-GlobalReduce Programming Model
• Focus on Map-Only and Map-Mostly Jobs
 - map-only, map-mostly, shuffle-mostly, and reduce-mostly *
• Scheduling Policies:
 – Computing Capacity Aware
 – Data Locality Aware (development in progress)

Programming Model

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>((k^i, v^i))</td>
<td>((k^m, v^m))</td>
</tr>
<tr>
<td>Reduce</td>
<td>((k^m, [v^m_1, ..., v^m_n]))</td>
<td>((k^r, v^r))</td>
</tr>
<tr>
<td>Global Reduce</td>
<td>((k^r, [v^r_1, ..., v^r_n]))</td>
<td>((k^o, v^o))</td>
</tr>
</tbody>
</table>

![Diagram of the Programming Model](image)
Procedures

1) A job is submitted into the system.
2) global controller to local clusters.
3) Intermediate pairs are passed to the Reduce tasks.
4) Local reduce outputs (including new key/value pairs) are send back to the global controller.
5) The Global Reduce task takes key/value pairs from local Reducers, performs the computation, and produces the output.
Computing Capacity Aware Scheduling

- \(Max\text{Mapper}_i = \rho_i \times \text{NumCore}_i \)
 - \(\rho_i \) is defined as maximum numbers of mappers per core.
- \(\gamma_i = Max\text{Mapper}_i - \text{MapperRun}_i \)
 - \(\gamma_i \) is the number of available Mappers on \(\text{Cluster}_i \)
- \(\text{Weight}_i = \frac{\gamma_i \times \theta_i}{\sum_{i=1}^{N} \gamma_i \times \theta_i} \)
 - \(\theta_i \) is the computing power of each cluster;
- \(\text{JobMap}_{x,i} = \text{Weight}_i \times \text{JobMap}_x \)
 - \(\text{JobMap}_{x,i} \) is the number of Map tasks to be scheduled to \(\text{Cluster}_i \) for job \(x \).
MapReduce to run multiple AutoDock instances

1) **Map**: AutoDock binary executable + Python script summarize_result4.py to output the lowest energy result using a constant intermediate key.

2) **Reduce**: Sort the values corresponding to the constant intermediate key by the energy from low to high, and outputs the results.

3) **Global Reduce**: Sorts and combines local clusters outputs into a single file by the energy from low to high.

AutoDock MapReduce input fields and descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ligand_name</td>
<td>Name of the ligand</td>
</tr>
<tr>
<td>autodock_exe</td>
<td>Path to AutoDock executable</td>
</tr>
<tr>
<td>input_files</td>
<td>Input files of AutoDock</td>
</tr>
<tr>
<td>output_dir</td>
<td>Output directory of AutoDock</td>
</tr>
<tr>
<td>autodock_parameters</td>
<td>AutoDock parameters</td>
</tr>
<tr>
<td>summarize_exe</td>
<td>Path to summarize script</td>
</tr>
<tr>
<td>summarize_parameters</td>
<td>Summarize script parameters</td>
</tr>
</tbody>
</table>
Experiment Setup

- Cluster Nodes Specifications.
 - FG: FutureGrid, IU: Indiana University

<table>
<thead>
<tr>
<th>Cluster</th>
<th>CPU</th>
<th>Cache size</th>
<th># of Core</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotel (FG)</td>
<td>Intel Xeon 2.93GHz</td>
<td>8192KB</td>
<td>8</td>
<td>24GB</td>
</tr>
<tr>
<td>Alamo (FG)</td>
<td>Intel Xeon 2.67GHz</td>
<td>8192KB</td>
<td>8</td>
<td>12GB</td>
</tr>
<tr>
<td>Quarry (IU)</td>
<td>Intel Xeon 2.33GHz</td>
<td>6144KB</td>
<td>8</td>
<td>16GB</td>
</tr>
</tbody>
</table>

- PBS allocated 21 nodes per cluster
 - 1 namenode, 20 datanode
- set $\rho_i = 1$ so that
 - $MaxMapper_i = \rho_i \times NumCore_i$
- AutoDock Version 4.2 on each cluster
- 6,000 ligands and 1 receptor.
- $ga_num_evals = 2,500,000$
Evaluation

\(\gamma \)-weighted dataset partition:
set \(\theta_i = C \), where \(C \) is a constant, \(\gamma_1 = \gamma_2 = \gamma_3 = 160 \)
\(Weight_i = 1/3 \)

The average global reduce time taken after processing 6000 map tasks (ligand/receptor docking) is 16 seconds.
Data Movement cost can be ignored in comparison with the computation cost
Local cluster MapReduce execution time based on different number of map tasks.
\(\gamma\beta \)-weighted dataset partition:

\[\theta_1 = 2.93 \text{ (Hotel)}, \quad \theta_2 = 2.67 \text{ (Alamo)}, \quad \theta_3 = 2 \text{ (Quarry)} \]

\[\gamma_1 = \gamma_2 = \gamma_3 = 160 \]

\(\text{Weight}_1 = 0.3860, \quad \text{Weight}_2 = 0.3505, \quad \text{Weight}_3 = 0.2635 \)
Conclusion and Future Work

• A hierarchical MapReduce framework as a solution to run MapReduce over a collection of clusters.
• “Map-Reduce-Global Reduce” model.
• Computing Capacity Aware Scheduling
• AutoDock as an example.
• Performance Evaluation showed the workload are well balanced and the total makespan was kept in minimum.

• Performance Test for Large Dataset Applications.
 – Data transfer overhead
 – Bring Computation to Data
 – Share File System that uses local storage
 – Change θ_i in the current scheduling policy

• Replace ssh+scp glue
 – Meta-scheduler?
 – Better data movement solution
 • gridftp?
 • Distributed file system?
Acknowledgements

• This work funded in part by
 – Pervasive Technology Institute of Indiana University
 – Microsoft

• Special thanks to Dr. Geoffrey Fox for providing early access to FutureGrid.
Thanks!
Questions?

Yuan Luo, http://www.yuanluo.net
Indiana University School of Informatics and Computing
http://www.soic.indiana.edu
Indiana University Data to Insight Center
http://pti.iu.edu/d2i
Backup Slides

Two-way Data Movement Cost: $\gamma \theta$-weighted Partitioned Input Datasets & Local MapReduce Outputs

Clusters

- Hotel
- Alamo
- Quarry

Data Stage-In

Data Stage-Out

Time (in seconds)

0 3 6 9 12 15 18 21