Introduction to Amazon Web Services

Thilina Gunarathne
Salsa Group, Indiana University.
With contributions from Saliya Ekanayake.
Introduction

• Fourth Paradigm – Data intensive scientific discovery
 – DNA Sequencing machines, LHC

• Commercial Cloud Platforms
 – Amazon Web Services
 – Microsoft Azure Platform
 – Google AppEngine
Cloud Computing

• On demand computational services over web
 – Spiky compute needs of the scientists
• Horizontal scaling with no additional cost
 – Increased throughput
• Cloud infrastructure services
 – Storage, messaging, tabular storage
 – Cloud oriented services guarantees
 – Virtually unlimited scalability
Amazon Web Services

• Compute
 – Elastic Compute Service (EC2)
 – Elastic MapReduce
 – Auto Scaling

• Storage
 – Simple Storage Service (S3)
 – Elastic Block Store (EBS)
 – AWS Import/Export

• Messaging
 – Simple Queue Service (SQS)
 – Simple Notification Service (SNS)

• Database
 – SimpleDB
 – Relational Database Service (RDS)

• Content Delivery
 – CloudFront

• Networking
 – Elastic Load Balancing
 – Virtual Private Cloud

• Monitoring
 – CloudWatch

• Workforce
 – Mechanical Turk
Amazon Web Services

• Compute
 – Elastic Compute Service (EC2)
 – Elastic MapReduce
 – Auto Scaling

• Storage
 – Simple Storage Service (S3)
 – Elastic Block Store (EBS)
 – AWS Import/Export

• Messaging
 – Simple Queue Service (SQS)
 – Simple Notification Service (SNS)

• Database
 – SimpleDB
 – Relational Database Service (RDS)

• Content Delivery
 – CloudFront

• Networking
 – Elastic Load Balancing
 – Virtual Private Cloud

• Monitoring
 – CloudWatch

• Workforce
 – Mechanical Turk
Demo Application

• Job queue based embarrassingly parallel application execution
 – BLAST, Monte Carlo simulations, many image processing applications, parametric studies

• Cap3 – Sequence Assembly*
 – Assembles DNA sequences by aligning and merging sequence fragments to construct whole genome sequences

• Executable available at
 http://seq.cs.iastate.edu/cap3.html

• Demo programs
 – http://salsahpc.indiana.edu/tutorial/apps/aws/

Sequence Assembly in the Clouds

Cap3 parallel efficiency

Cap3 – Per core per file (458 reads in each file) time to process sequences
Cost to assemble to process 4096 FASTA files*

- **Amazon AWS total : 11.19 $**
 - Compute 1 hour X 16 HCXL (0.68$ * 16) = 10.88 $
 - 10000 SQS messages = 0.01 $
 - Storage per 1GB per month = 0.15 $
 - Data transfer out per 1 GB = 0.15 $

- **Azure total : 15.77 $**
 - Compute 1 hour X 128 small (0.12 $ * 128) = 15.36 $
 - 10000 Queue messages = 0.01 $
 - Storage per 1GB per month = 0.15 $
 - Data transfer in/out per 1 GB = 0.10 $ + 0.15 $

- **Tempest (amortized) : 9.43 $**
 - 24 core X 32 nodes, 48 GB per node
 - Assumptions : 70% utilization, write off over 3 years, including support

* ~ 1 GB / 1875968 reads (458 reads X 4096)
Security Credentials

• Access Keys
 – Making a REST or Query API request
 – JAVA SDK for S3, SQS, SimpleDB

• EC2 Key Pairs
 – Launching/connecting to EC2 instances

• X.509 Certificate
 – SOAP API
 – Command line tools
AWS Toolkit for Eclipse

• Open source plug-in for Eclipse
• AWS Java SDK
 – Java API for AWS services
• Amazon SimpleDB management
 – Configure, edit, query
• Amazon EC2 management
 – Deploy, debug, manage
Installing AWS Toolkit in Eclipse

• Installing
 – Java 1.5 or higher
 – Eclipse 3.5 or higher (Java EE distribution recommended)
 – http://aws.amazon.com/eclipse
Simple Storage Service (S3)

• Internet Data Storage
 – Reliable, Simple, Scalable, and Inexpensive

• Three Concepts
 – Buckets
 • Analogous to a folder with no nesting
 • URL accessible
 • Option to enforce geographical constraints
 – Objects
 • Actual data stored in buckets, e.g. PDF, Video, etc.
 • Up to 5 gigabytes
 • Unlimited number of objects
 • Retrievable via HTTP, HTTPS, or BitTorrent
 • Private, public or selectively for users
 – Keys
 • Unique key to identify each object in a bucket
Simple Storage Service (S3)

- **Access Logs**
 - Option to enable logs for buckets

- **Pricing**
 - Data storage
 - 0.15$ per GB for first 50TB to 0.055$ per GB for over 5000TB
 - Data transfer in
 - 0.1$ per GB (free till Nov, 2010)
 - Data Transfer out
 - 0.15$ per GB up to 10TB to 0.08$ per GB for over 150TB
 - Requests
 - PUT, COPY, POST, LIST -> 0.01 $ per 1000 requests
 - Others -> 0.01$ for 10,000 requests

- **Reduced Redundant Storage**
 - 2/3 of the storage cost
Using S3 as the Data Storage

- S3 management console
- Uploading the input data to S3
- Downloading/uploading files (s3 objects) programmatically
- Run Sample
 - AWSStepOne eclipse project
AWS Import/Export

• Accelerates Moving Large Scale Data
 – In to and out of AWS using portable storage
 – Utilized Amazon’s high-speed internal network
 – Often faster than Internet upload/download for large data
• Simple Steps
 – Prepare a portable storage device
 – Request AWS with S3 bucket, key, and shipping address
 – Receive an ID, digital signature, an AWS shipping address
 – Identify and authenticate storage device with digital signature
 – Ship it and wait for Amazon to ship it back 😊
• Data migration, content distribution, offsite backup, disaster recovery, direct data interchange
Simple Queue Service

- Reliable and Scalable Distributed Messaging Framework
 - Create, store, and retrieve text messages (up to 8 KB)
 - Eventual consistency
- Messages
 - Stored until retrieved or four days
 - MessageID, ReceiptHandle, MD5OfBody, Body
- Queues
 - Possible to create unlimited number of queues
- Concerns
 - Queue order, i.e. FIFO, is not guaranteed
 - Message deletion in a queue is not guaranteed
 - Querying a queue is not guaranteed to return all messages
 - Guarantee at least once delivery, but not exactly once
Simple Queue Service

• **Visibility Timeout**
 – When received, the message will be locked in the queue for a given time
 – Message reappears when the lock “expires”, unless deleted by the earlier recipient

• **Access through REST as well as SOAP API’s**

• **Queue sharing**

• **Pricing**
 – 0.01$ for 10,000 requests
 – Data transfer in
 • 0.10$ per GB after Nov, 2010
 – Data transfer out
 • 0.15$ per GB up to 10TB TO 0.08$ per GB over 150 TB
Using the Queue to Schedule Jobs

• Queue Operations
 – CreateQueue
 – putMessage
 – getMessage
 • visibility time out
 – deleteMessage

• Fault tolerance

• Run sample
 – AWSSampleTwo Eclipse project
Simple Notification Service (SNS)

• Notification Service
 – Scalable, flexible, and cost-effective
 – Topic based publishing
 – Multiple protocol support, e.g. HTTP, email, etc.
 – Eliminates polling through push mechanism

• Simple Steps
 – Create a topic
 • Identify subject or event type
 – Set policies
 • Publisher/subscriber limiting, protocol, etc.
 – Add subscribers
 – Publish message
SimpleDB

- Non-relational data store
 - No need to pre-define schema

- Dataset Indexing and Querying Framework
 - Highly available, scalable, secure, and fast
 - Store and retrieve structured data
 - Eventual consistency
 - Optional consistent reads
 - No transactions
 - Conditional puts/deletes
 - Condition based on existing value
SimpleDB

• Domains
 – Containers to store and query structured data
 • Analogous to a spreadsheet
 – No cross domain querying

• Items
 – Individual objects within domains
 • Analogous to a row in worksheet
 • Contains attributes with values; similar to columns and cells
SimpleDB

• Limitations
 – Domain size, domains per AWS account, Attributes, etc.

• Pricing
 – Free tier
 • 25 machine hours, 1 GB storage
 – Machine utilization
 • 0.14$ per machine hour
 – Data transfer in
 • 0.10$ per GB after Nov, 2010
 – Data transfer out
 • 0.15$ per GB up to 10TB TO 0.08$ per GB over 150 TB
 – Structured storage
 • 0.25$ per GB per month
Using the SimpleDB for monitoring & metadata storage

• Operations
 – CreateDomain
 – ReplaceableItem List
 – batchPutAttributes

• Run sample
 – AWSSampleThree Eclipse project

• Check the Eclipse SimpleDB management view
Relational Database Service (RDS)

- Relational Database as-a-service
 - Full capabilities of MySQL database
 - Easy deployment, managed, secure, scalable, and reliable
- Simple Steps
 - Use AWS Management Console/API to launch a database instance (DB Instance)
 - Connect to DB Instance with any MySQL supported tool
 - Monitor through Amazon CloudWatch
- Features
 - Automated backups
 - DB snapshots
 - Multi-AZ deployments
 - Enhanced availability though multiple availability zones
SimpleDB vs RDS

• SimpleDB
 – No administrative burden at all
 – Scales up/down automatically
 – Highly available
 • No downtime
 – No joins, no transactions
 – Flexible

• RDS
 – Existing applications that require relational database
 – Need to decide the scaling decisions
 • How much storage, what size instance, etc
Elastic Compute Service

• Lease Linux as well as Windows VM’s
 – 32 bit as well as 64 bit VM’s
 – Pay as you go
 • Just a credit card to get going
 – Dynamically scale up/down
 – Increase throughput by horizontal scaling for the same cost
 – ‘root’ access to VM’s

• Pre-configured, template images
 – Create AMI to store customized images
Elastic Compute Service

• Purchasing options
 – On demand
 – Reserved
 • One time fee + usage
 – Spot
 • Bit for unused EC2 capacity
 • Sometimes going 33% of the price of on demand
 – Cluster compute instances

• Elastic IP addresses
Elastic Compute Service

Pricing

- Standard, High-memory, High-CPU, cluster

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>Memory</th>
<th>EC2 compute units</th>
<th>Actual CPU cores</th>
<th>Cost per hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>7.5 GB</td>
<td>4</td>
<td>2 X (~2Ghz)</td>
<td>0.34$</td>
</tr>
<tr>
<td>Extra Large</td>
<td>15 GB</td>
<td>8</td>
<td>4 X (~2Ghz)</td>
<td>0.68$</td>
</tr>
<tr>
<td>High CPU Extra Large</td>
<td>7 GB</td>
<td>20</td>
<td>8 X (~2.5Ghz)</td>
<td>0.68$</td>
</tr>
<tr>
<td>High Memory 4XL</td>
<td>68.4 GB</td>
<td>26</td>
<td>8X (~3.25Ghz)</td>
<td>2.40$</td>
</tr>
<tr>
<td>Cluster 4XL</td>
<td>23 GB</td>
<td>33.5</td>
<td>*</td>
<td>1.60$</td>
</tr>
</tbody>
</table>

* 2 x Intel Xeon X5570, quad-core “Nehalem” architecture
Sequence Assembly Performance with different EC2 Instance Types

![Chart showing performance comparison]

- Amortized Compute Cost
- Compute Cost (per hour units)
- Compute Time
GTM Interpolation performance with different EC2 Instance Types

- EC2 HM4XL best performance. EC2 HCXL most economical. EC2 Large most efficient.
HPC in AWS

• Newest announcement
 – Cluster compute instances

• Features
 – Ability to group them in to clusters
 – Low latency full duplex 10 Gbps between instances
 – Published processor architecture
 – Hardware virtual machine

• Limitations
 – No spot or reserved instances
 – No Auto scaling
CloudWatch

• Monitor Amazon Cloud Resources
 – EC2 instances, EBS volumes, Elastic Load Balancers, and RDS database instances
 – Insight to resource utilization, performance, and demand patterns
 – Exposed through Amazon Management Console, API, command line tools
• Pay only for monitoring EC2 instances
• Enables AutoScaling for EC2 instances
 – Dynamically add/remove instances based on CloudWatch metrics
• Pricing
 – 0.015$ per instance hour
Auto Scaling

• Automatically Scale Up/Down EC2 Capacity
 – Conditions are set based on CloudWatch metrics
 – Seamlessly handles demand spikes and drops
 – Consumed through API/command line tools

• Common Uses
 – Automatically scaling EC2 fleet
 • Close follow up of the demand curve
 – Maintaining EC2 fleet at a fixed size
 • Keep healthy EC2 instance number constant
 – Auto scaling with Elastic Load Balancing
 • Efficient load balancing

• Pricing
 – Free with CloudWatch
Deploying the Application in EC2

• Launching instances
 – Spot instances
 – Security groups

• Log-in to instances

• Public AMI for this demo
 – ami-af0ae1c6
 – You need to fill you keys 😊
AMI

• Amazon Machine Images
• Installing the program
• Saving AMI
Run the Program

• Launch the workers
• Run the Driver program
• Monitor using CloudWatch
Elastic MapReduce

- MapReduce as-a-service
 - Utilizes Apache Hadoop, Amazon EC2, and Amazon S3
- Simple Steps
 - Develop MapReduce program
 - Many language support, e.g. Pig, Java, Ruby, C++, etc.
 - Upload data to S3
 - Create and monitor “job flow” through AWS Management Console/command line/API
- Pros
 - Reliable, secure, elastic, and easy
 - Third party tools
 - Seamless integration with EC2, S3
- Cons
 - No tweaking of Hadoop
 - Only supports Hadoop MapReduce framework
EMR bucket names

• S3N Native File System for Hadoop
 – Bucket names should not contain underscores “_”
 – Bucket names should be between 3 and 63 characters long
 – Bucket names should not end with a dash

• Tips for EMR
 – Include at least 3 slashes in the paths
 • S3n://wc-input/
 – Do not use an existing bucket for output
 – More tips
Running WordCount using EMR

• Upload data to S3
 – Create a logs folder
• Create job flow
• Debugging & logging
• Monitoring using Lynx
• Download output
Elastic Block Store (EBS)

• Data you save in the running instance are not persistent
• Block level storage volumes
• Off the instance persistent storage
• Ideal for applications like databases
• Pricing
 – 0.10 $ per GB per month provisioned
 – 0.10 $ per million I/O requests
Elastic Load Balancing

• Automatic Distribution of Incoming Traffic
 – Distribute across single or multiple Availability Zones
 – Avoid routing to unhealthy EC2 instances
 – Session affinity load balancing
 – Metrics reported by CloudWatch
 – Auto scale capacity
 – Greater fault tolerance
Virtual Private Cloud (VPC)

• Secure and Seamless Bridge
 – Between a company’s IT infrastructure and AWS cloud
 – Isolated AWS compute resources via VPN
 – Extend existing management capabilities to cloud resources, e.g. security, firewalls, etc.

• Features
 – Bridge with encrypted VPN connection
 – Add EC2 instances to VPC
 – Route traffic between VPC and Internet over VPN to examine/monitor data flow

• Pricing
 – 0.05$ per VPN connection per hour
 – Data transfer out – 0.15$ per GB to 0.08$ per GB
CloudFront

- Content Delivery as-a-service
 - Delivers static and streaming content
 - Global network of edge locations
 - US, Europe, Hong Kong/Singapore, Japan
 - Automatic routing of objects to nearest edge location
 - Reliable, scalable, and fast

- Simple Steps
 - Store the original versions of files in a S3 bucket
 - Create a distribution and register the bucket
 - Use the distribution’s domain name to as an access point
Mechanical Turk

• Marketplace for Human Intelligence Work
 – Access a virtual community of on-demand workers
 – Programmatically access marketplace
 – Define Human Intelligence Tasks (HITs)
 • Identifying objects in an image, transcribing audio, etc.
 – Load HITs to marketplace
 – Qualify workforce
 • Enable qualification tests for tasks requiring special skills
 – Pay only for accepted work/output
 – Retrieve results via service API
Thank You!

• Questions? 😊
Acknowledgments

• Prof. Geoffrey Fox, Dr. Judy Qui, Saliya Ekanayake, Tak-Lon Wu (Stephen) and the Salsa group

• Dr. Ying Chen and Alex De Luca from IBM Almaden Research Center

• Virtual School Organizers